COVID-19 Key COVID-19 metrics based on the latest available science – as of 12 June 2020

Projections using RTSL calculator (13 June 2020)

These projections come from our calculator, which provides a quick rough estimate of total COVID-19 cases in a population based on the number of COVID-19 deaths. Since case counts are highly related to the amount of testing done, deaths (which tend to be more easily detected) can be used to estimate the total number of cases. Assumptions include:

- The number of COVID-19 related deaths is easier to ascertain than the number of cases
- The number of true COVID-19 infections includes asymptomatic cases, presymptomatic cases, symptomatic cases, deaths and recovered patients
- The Infection Fatality Rate or Ratio (IFR) is the number of deaths over the total number of infections, and is influenced by many factors including age distribution of a population and case management
- There is a lag of approximately 2 weeks (or 14 days) on average between illness onset and deaths
- Cases in the past 14 days will have a similar case fatality rate as those prior to 14 days ago

The calculator provides a rough estimate and does not consider all the important factors that affect cases and deaths. It will be inaccurate if deaths are highly clustered in a population (heterogenous), so that the number of deaths would not necessarily imply a certain amount of cases in the population.

Global

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs (calculations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of COVID-19 deaths</td>
<td>425,931</td>
</tr>
<tr>
<td>Total cumulative cases</td>
<td>7,625,883</td>
</tr>
<tr>
<td>Total cumulative cases as of 14 days ago</td>
<td>5,901,327</td>
</tr>
<tr>
<td>Total population</td>
<td>7,800,000,000</td>
</tr>
<tr>
<td>Proportion of population over 65</td>
<td>9%</td>
</tr>
<tr>
<td>Presumed Infection Fatality Rate</td>
<td>0.50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Lower estimate</th>
<th>Mid-point estimate</th>
<th>Higher estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated total cases</td>
<td>92,473,391</td>
<td>110,968,070</td>
<td>138,710,087</td>
</tr>
<tr>
<td>Estimated true attack rate</td>
<td>1.2%</td>
<td>1.4%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Estimated cases missing</td>
<td>84,847,508</td>
<td>103,342,187</td>
<td>131,084,204</td>
</tr>
<tr>
<td>Estimated percentage of true cases detected</td>
<td>8.2%</td>
<td>6.9%</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

Africa

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs (calculations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of COVID-19 deaths</td>
<td>6,309</td>
</tr>
<tr>
<td>Total cumulative cases</td>
<td>233,030</td>
</tr>
<tr>
<td>Total cumulative cases as of 14 days ago</td>
<td>146,930</td>
</tr>
<tr>
<td>Total population</td>
<td>1,216,000,000</td>
</tr>
<tr>
<td>Proportion of population over 65</td>
<td>4%</td>
</tr>
<tr>
<td>Presumed Infection Fatality Rate</td>
<td>0.28%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Lower estimate</th>
<th>Mid-point estimate</th>
<th>Higher estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated total cases</td>
<td>3,021,145</td>
<td>3,625,374</td>
<td>4,531,717</td>
</tr>
<tr>
<td>Estimated true attack rate</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Estimated cases missing</td>
<td>2,798,115</td>
<td>3,392,344</td>
<td>4,298,687</td>
</tr>
<tr>
<td>Estimated percentage of true cases detected</td>
<td>7.7%</td>
<td>6.4%</td>
<td>5.1%</td>
</tr>
</tbody>
</table>
SURVEILLANCE CASE DEFINITIONS

WHO
Updated 20 March

Suspected case
A patient with acute respiratory illness (fever and at least one sign/symptom of respiratory disease, e.g., cough, shortness of breath), AND a history of travel to or residence in a location reporting community transmission of COVID-19 disease during the 14 days prior to symptom onset;
OR a patient with any acute respiratory illness AND having been in contact with a confirmed or probable COVID-19 case (see definition of contact) in the last 14 days prior to symptom onset;
OR a patient with severe acute respiratory illness (fever and at least one sign/symptom of respiratory disease, e.g., cough, shortness of breath; AND requiring hospitalization) AND in the absence of an alternative diagnosis that fully explains the clinical presentation.

US CDC
updated 5 April

Clinical Criteria
At least two of the following symptoms: fever (measured or subjective), chills, rigors, myalgia, headache, sore throat, new olfactory and taste disorder(s)
OR At least one of the following symptoms: cough, shortness of breath, or difficulty breathing
OR Severe respiratory illness with at least one of the following: Clinical or radiographic evidence of pneumonia, OR Acute respiratory distress syndrome (ARDS). AND No alternative more likely diagnosis

Laboratory Criteria
Laboratory evidence using a method approved or authorized by the U.S. FDA or designated authority:
Confirmatory laboratory evidence:
Detection of severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in a clinical specimen using a molecular amplification detection test
Presumptive laboratory evidence:
Meet clinical criteria AND epidemiologic evidence with no confirmatory laboratory testing performed for COVID-19.
Meets presumptive laboratory evidence AND either clinical criteria OR epidemiologic evidence.

Probable case
A suspect case for whom testing for the COVID-19 virus is inconclusive OR A suspect case for whom testing could not be performed for any reason.

Confirmed Case
A person with laboratory confirmation of COVID-19 infection, irrespective of clinical signs and symptoms.
Epidemiology (Best Estimates Based on Multiple Sources, Available Upon Request If Not Listed)

Glossary of epidemiologic terms ([IDM](https://www.idmod.org/))

Transmission

- **Basic Reproduction Number**: R_0 estimate: 2-3 (1.4-5.7) (multiple), 2.5 ([CDC best estimate](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
 - **Effective Reproduction Number**: R_t estimates: LSHTM, R_{live} (US-focused), Hong Kong, Covid-19 projections
- Doubling time without intervention: 6-9 days ([IDM](https://www.idmod.org/))
- Secondary attack rate (household/close contact): 3-38% (multiple)
- Risk of transmission is potentially greatest two days before symptom onset ([He et al](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission)) and high early in development of symptoms and declines over the course of several days to weeks ([US CDC](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- Odds of transmitting disease in a closed environment was 19 times higher than in an open-air environment. ([Preprint](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- Viral loads from 14 patients peaked between days 0-3 after symptom onset ([Zou et al.](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- Viral clearance in asymptomatic is faster than symptomatic ([Chau et al.](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- The median duration of viral shedding (the number of days from symptoms onset till the successive negative detection of SARS-CoV-2 RNA) was 17 days (12-21 IQR) ([Qi et al](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- The proportion of SARS-CoV-2 transmission due to asymptomatic or pre-symptomatic infection compared to symptomatic infection is unclear ([US CDC](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- Percentage of transmission occurring prior to symptom onset: 40% ([CDC best estimate](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- Infectiousness of asymptomatic individuals relative to symptomatic individuals: 100% ([CDC best estimate](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- Precautions: WHO continues to recommend droplet and contact precautions for those people caring for COVID-19 patients. WHO continues to recommend airborne precautions for circumstances and settings in which aerosol generating procedures and support treatment are performed ([WHO](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))
- Time between symptom onset in an individual and symptom onset of a second person infected by that individual: 6 days ([CDC best estimate](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#transmission))

Incubation period

- Estimates of median incubation period are 4-5 days with a range from 0-14 days ([CDC](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#incubation))
- 97.5% of persons with COVID-19 who develop symptoms will do so within 11.5 days of SARS-CoV-2 infection ([Lauer et al](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#incubation))

Clinical presentation

- Signs and symptoms of COVID-19 present at illness onset vary, but over the course of the disease, most persons with COVID-19 will experience the following ([US CDC](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#clinical)):
 - Fever (83–99%) Cough (59–82%) Fatigue (44–70%) Anorexia (40–84%) Shortness of breath (31–40%) Sputum production (28–33%) Myalgias (11–35%)
- 81% of cases are mild or moderate (including outpatient pneumonia), 14% severe, and 5% critical ([China CDC Weekly](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#clinical))
- Proportion of asymptomatic infection (5-80%) ([CEBM – combined estimate from 21 reports](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#clinical))
 - Percent of infections that are asymptomatic 35% ([CDC best estimate](https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-and-management.html#clinical))
 - Varies by setting
 - **Diamond Princess** 18%
 - **Vo, Italy** 50-75%
 - **Japanese nationals evacuated from Wuhan** 31%
 - **Residents of a Long-Term Care Nursing Facility King County, Washington** 57% (includes pre-symptomatic, total 13% asymptomatic throughout)
 - **Children in China** 28% (10/36 children)
- Cruise Ship to Argentina 81%
- Pregnant women presenting for childbirth in Connecticut 73%
- Percent of infections that are asymptomatic 35% (CDC best estimate)
- Case hospitalization ratio 3.4% (CDC best estimate)
 - 0-49 1.7% | 50-64 4.5% | 65+ 7.4%
- Health Alert Network on Multisystem Inflammatory Syndrome in Children (MIS-C) with COVID-19 (CDC)

Clinical course
- Among patients who developed severe disease (US CDC),
 - the median time to dyspnea ranged from 5 to 8 days,
 - the median time to acute respiratory distress syndrome (ARDS) ranged from 8 to 12 days, and
 - the median time to ICU admission ranged from 10 to 12 days.
- 17.8 days (95% CI 16.9-19.2) mean duration from onset of symptoms to death (Verity et al)
- 24.7 day (95% CI 22.9-28.1) mean duration from symptoms to hospital discharge (Verity et al)
- Median duration from ICU admission to death was seven days for non-survivors (Yang et al).
- US (CDC best estimate)

<table>
<thead>
<tr>
<th></th>
<th>0-49</th>
<th>50-64</th>
<th>>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean number of days from symptom onset to hospitalization (standard deviation)</td>
<td>6.9 (5)</td>
<td>7.2 (5.3)</td>
<td>6.2 (5.7)</td>
</tr>
<tr>
<td>Mean number of days of hospitalization among those not admitted to ICU</td>
<td>3.9 (3.7)</td>
<td>4.9 (4.3)</td>
<td>6.3 (5.1)</td>
</tr>
<tr>
<td>Mean number of days of hospitalization among those admitted to ICU</td>
<td>9.5 (7.2)</td>
<td>10.5 (7.0)</td>
<td>10.0 (6.8)</td>
</tr>
<tr>
<td>Percent admitted to ICU among those hospitalized</td>
<td>21.9%</td>
<td>29.2%</td>
<td>26.8%</td>
</tr>
<tr>
<td>Percent on mechanical ventilation among those in ICU</td>
<td>72.1%</td>
<td>77.6%</td>
<td>75.5%</td>
</tr>
<tr>
<td>Mean number of days of mechanical ventilation</td>
<td>5.5 (5.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean number of days from symptom onset to death</td>
<td>14.9 (7.7)</td>
<td>15.3 (8.1)</td>
<td>12.9 (7.6)</td>
</tr>
<tr>
<td>Mean number of days from death to reporting</td>
<td>7.1 (7.7)</td>
<td>7.2 (7.7)</td>
<td>6.6 (7.3)</td>
</tr>
</tbody>
</table>

Diagnostic testing
- Detection of SARS-CoV-2 viral RNA is better in nasopharynx samples compared to throat samples (US CDC)
- Lower respiratory samples may have better yield than upper respiratory samples (US CDC)
- SARS-CoV-2 RNA has also been detected in stool and blood. Detection of SARS-CoV-2 RNA in blood may be a marker of severe illness (US CDC)
- Viral RNA shedding may persist over longer periods among older persons and those who had severe illness requiring hospitalization (median range of viral shedding among hospitalized patients 12–20 days) (US CDC)
- Viral shedding appears before symptom onset and is highest in the first week of symptom onset then declines with time (To et al, He et al, ECDC)
- Infection with both SARS-CoV-2 and with other respiratory viruses has been reported, and detection of another respiratory pathogen does not rule out COVID-19 (US CDC)
Case fatality rate (CFR) / Infection fatality rate (IFR)
- Global observed CFR 5.6% as of 12 June 2020 (ECDC) is an overestimate due to undetected cases (mild, presymptomatic, asymptomatic)
- In China, the CFR was higher in the early stages of the outbreak (17% for cases from 1 to 10 January) and reduced to 0.7% for patients with symptom onset after 1 February (link)
- Estimate true infection fatality rate (IFR) (accounts for undetected cases): 0.1-1.1% (multiple, most recent Oxford)
 - Age specific IFRs (Rinaldi et al)
 - Under 60 years - 0.05% (95% CI 0-0.19%)
 - 60 and above - 4.25% (3.01-6.39%)
 - Symptomatic CFR 0.4% (0.2-1%) (CDC)

TREATMENT
Limited evidence of effective COVID-19 therapies
- Give supplemental oxygen therapy immediately to patients with SARI and respiratory distress, hypoxemia or shock and target > 94% (WHO)
- Give empiric antimicrobials to treat all likely pathogens causing SARI and sepsis as soon as possible, within 1 hour of initial patient assessment for patients with sepsis (WHO)
- Do not routinely give systemic corticosteroids for treatment of viral pneumonia outside of clinical trials (WHO)
- Use of investigational anti-COVID-19 therapeutics should be done under ethically approved, RCTs (WHO)
- No U.S. Food and Drug Administration (FDA)-approved drugs have demonstrated safety and efficacy in randomized controlled trials when used to treat patients with COVID-19, although FDA has granted an Emergency Use Authorization for the use of remdesivir to treat severe cases. (US CDC)
- Preliminary evidence suggests remdesivir is effective at reducing the duration of COVID-19 illness, more data is needed to confirm this result (NIH)
- NIH COVID-19 treatment guidelines
EMENVIRONMENT

Temperature
- Emerging non-peer reviewed evidence appears to suggest that weather conditions may influence the transmission of the novel coronavirus (SARS-CoV-2), with cold and dry conditions appearing to boost the spread. This phenomenon may manifest itself through two mechanisms: the stability of the virus and the effect of the weather on the host. The weather effect is minimal, and all estimates are subject to significant biases, reinforcing the need for robust public health measures (Oxford).
- Epidemic peak could shift to winter in temperate countries. Seasonal changes in transmission rate could shift the timing of the peak into winter months, which will have important implications for healthcare capacity planning (Danon).

Fomites
- Survival of SARS-CoV-2 in a controlled setting: (NEJM)
 - 72 hours after application to plastic, 48 hours on stainless steel, 24 hours on cardboard and 4 hours on copper
- Study of hospital wards in Wuhan, China tested air and surface samples. Virus was widely distributed on floors, computer mice, trash cans, and sickbed handrails and was detected in air ≈4 m from patients (EID)